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BY 
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The intent of this article is to provide a general and elementary account of the 
model theory of differential fields, collecting together various results (many 
without proof) and offering a few algebraic details for the logician reader. The 
first model-theoretic look at differential fields was taken by Abraham Robinson 
in the context of model completeness, while later developments have served to 
illustrate concepts developed by Morley and Shelah. 

1. Algebraic preliminaries 

We begin with a somewhat  leisurely account  of algebraic facts, with an eye for  

those p h e n o m e n a  of model- theore t ic  importance.  

DEFINITION. A n  (ordinary) differential field ~: is a field in the usual algebraic 

sense together  with a derivat ion D on ~:, i.e., D is a unary funct ion satisfying 

D ( a  + b) = Da + Db and D ( a b )  = aDb + (Da)b  for all a, b ~ ~;. 

A l though  we restrict our  at tent ion to ordinary differential fields, it is not  

difficult to  see that the results generalize to partial differential fields (ones with a 

finite set of commut ing  derivations).  In distinguishing be tween differential fields 

and fields we shall f requent ly  refer to the latter as algebraic fields. 

A basic motivat ing example  of a differential field is the field of  all complex 

meromorph ic  functions in one  complex variable x on some fixed region,  with D 

taken as d/dx.  

For  any differential field ~ the set ~ of  constants  ( ~  = {a E ~ t  Da  = 0}) is a 

sub-differential field of  ~:; ~ contains  the pr ime (algebraic) field of  :~ as well as 

anything separably algebraic over  the pr ime field, as is readily checked.  In 

characterist ic p Y  0 we have ~P C_ ~, since D ( a  ~) = pad-IDa = 0 for all a E ~:. 

* Preparation of this paper supported in part by N.S.F. Grant MPS 75-08241. 
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A differential field is called differentially perfect if either p = 0 or ~:P = ~', where 

p is the characteristic of ~:. Note that if ~: is its own constant field, then ~ is 

differentially perfect just in case ~ is algebraically perfect. Furthermore any 

differential field can be extended (but not, in general, in any unique fashion) to a 

differentially perfect field by successive adjunctions of p th  roots for all constants. 

Some basic references for differential algebra are Ritt [7], Kaplansky [3] and 

Kolchin [5]; everything in this section can be found in Kolchin's book. 

In considering both model completeness and stability results it will be useful to 

have the notion of differentially algebraic and the associated notions of 

differential polynomials and ideals over a differential field ~. We deal for the 

most part with simple differential extensions, both for ease of notation and 

because certain model theoretic considerations make it sufficient to look only at 

simple extensions in the characteristic 0 case. For nonzero characteristic the 

additional complications have been described elsewhere [24] and we give them 

only cursory treatment here. 

DEFINITION. Let a be an element of some differential field extension ~ '  of ~:. 

We say a is differentially algebraic over ~; if the set {a, Da, D2a, . . .  } is 

algebraically dependent  over ~. Otherwise a is differentially transcendental over 

~. We denote  by ~:(a) the differential field extension of ~F generated by a ;  

~ ( a )  = ~ (a ,  D a , . . . )  as algebraic field, with D given by restriction from ~ ' .  

The differential polynomial ring ~{y} in one differential indeterminate y is the 

algebraic ring ~[y ,  Dy, D2y, . .  �9 ] in algebraic indeterminates y -- 

D~ D ly, D 2 y , . . .  over ~, with differential ring structure given by extending D 

on ~ such that D ( D n y )  = Dn§ for all n = 0, 1,. �9 �9 . A differential ideal ~ in 

~{y} is an algebraic ideal which is closed under D. 

Given f E  ~{y}, f ~ 0 ,  the order of f is the greatest n, if any, suah that D ' y  

occurs nontrivially in f ;  if f ~ ~:, f ~  0, the order of f is - 1. Given f of order 

n =>0 we write f =  ET~o ~ (D "y )' where each ~ E ~ [ y , . - . , D ' - ~ y ] ,  m > 0  and 

[,~ ~ 0. The separant $I of f is the partial derivative of f with respect to D 'y ,  i.e., 

Sr = E?~1 i~,(Dny) '-1, and the initial It of f is the leading coefficient fm of f as a 

polynomial in D 'y .  Observe that I t~  0 and, in characteristic 0, St~ 0 for any f of 

order => 0. 

DEFINITION. A partial ordering on nonzero elements of ~:{y} is defined as 

follows: 

f is lower than g if the order of f is less than the order of g, or if 0 _-< n = order  

f = order  g and / ' i s  of lower degree than g as a polynomial in Dny. Observe that 

St, if nonzero, and It are each lower than [. 
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Let [/] denote  the differential ideal generated by f E  of{y}, so that [/] = 

(f, Dr , . . .  ) as algebraic ideal. Then the usual division algorithm procedure for 

polynomials in several variables (p. 6 of Ritt [7]) yields that for any g E of{y} 

there is go lower than f or zero and integers j, k _-> 0 such that S}I~g = go E [f]. 

We call such a go a remainder of g with respect to f. 
Now suppose f = f(y, D y , - . . ,  D " y )  E of{y}, f of order  n => 0, f irreducible (as 

a polynomial in o f [ y , . . . , D " y ] )  such that Srfi0.  Let a = ao, a l , " ' , a , - 1  be 

algebraic indeterminates over of and let a, be a root of f(ao,'" ", a,_~, X)  over 

the algebraic field o f (ao , ' - . ,  a . -0 ,  where we note that f (ao, . . . ,  a,_~,X) is 

irreducible and separable (since St~ 0) as an algebraic polynomial in X over 

of(a0, ' -  ", a.-1). A differential field extension of(a)  of of is obtained by taking 

o f ( a ) =  o f ( a 0 , ' " , a , - ~ , a , )  as fields, and extending D from of to of(a)  by 

assigning Da~ = a~+~, i =  0 , - . . ,  n -  1. This uniquely defines a differential field 

(see, for example, Seidenberg [16, p. 179] or Weil [22]). Observe that f (a)  = 0 
while g(a) ~ 0 for all g(y) E of{y} such that g is lower than f. The element a is 

called a generic zero of f over of. 

If we take 5~ = {g @ Of{Y}I g(a) = 0} then .9 is a prime differential ideal (prime 

in the usual sense) but it is not however the case that 5~ is the differential ideal 

(or even the radical of the differential ideal) generated by f. Here  5 is called the 

defining differential ideal of a over of. 

Conversely, given any extension of(a)  of of where a is differentially algebraic 

over of, there is a lowest irreducible f, unique up to a nonzero factor in of, such 

that f (a)  = 0. If St~ 0 (which always is the case for i~reducible f associated with 

differentially algebraic a if of is differentially perfect) then we again know that 

of(a) is determined up to differential field isomorphism over of by the fact that a 

is a generic zero of f, i.e., by the equation f (a)  = 0 together with g(a) ~ 0 for all 

lower g (in fact, it suffices to know this for g of lower order  than that of f) .  

Finally, if of(a)  and of(b) are differential field extensions of of with a and b 

each differentially transcendental over of, then, for the usual algebraic reasons, 

of(a)  and of(b) are isomorphic over of under a differential field isomorphism 

sending a to b. Thus we have a reasonable idea of all simple extensions over 

differentially perfect fields. We note that the constant fields of such extensions 

are not easily identifiable in general; one exception is that of a differentially 

transcendental extension of(a)  of ~. There  the constant field of of(a)  is 

C~(ae,(Da)e,...) where ~ is the constant field of of and where p is the 

characteristic of of (so in characteristic p = 0 we have simply ~ as constant field). 

Thus we have the following. 
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THEOREM 1.1. Over a differentially perfect field ~;, there are max {No, card ~} 

isomorphism types of elements over ~;. 

PROOF. Any simple extension ~:(a) of a differentially perfect field ~: is either 

differentially transcendental or is determined by the fact that a is a generic zero 

of an irreducible differential polynomial f ~ ~{y}. There are max{No, card ~} 

such f ' s  and only one differentially transcendental extension, so there are at 

most max{N0,card~:} such extensions. It is clear also that there are 

max{N0, card Jr} distinct isomorphism types of elements: if ~: is finite there are 

enough types in its algebraic closure, if ~ is infinite, there are card ~ many 

monic irreducible polynomials of the form Dy - b for b ~ ~:, each of which gives 

a distinct isomorphism type over ~. 

To describe the isomorphism type of a simple differentially transcendental 

extension it is clear that no finite number of (differential polynomial) equations 

and inequations suffices, nor even (in contrast now to a simple differentially 

algebraic extension) an arbitrary number of equations and inequations in finitely 

many variables y, D y , . . - ,  D"y ;  thus the type of a transcendental extension 

cannot be principal (in the model theoretic sense). To identify which of the 

differentially algebraic types are principal we use the following notion. Through- 

out we assume ~: to be differentially perfect. 

DEFINITION. Let ~ be a differential ideal in ~{y}. # is perfect if f"  ~ ~r implies 

f E ~, for all f E ~{y} and n > 0. # is constrained if ~ is perfect and there exists 

g ~ ~ { y } - ~  such that ~ is maximal among perfect differential ideals with 

respect to exclusion of g; i.e., if # ~ ' ,  ~ '  a perfect differential ideal in ~{y}, 

then g E ,~'. Such a g is called a constraint of ~. A constrained element a in an 

extension of 5 ~ is an element whose defining differential ideal is constrained. 

REMARKS. 1. A constrained ideal is always prime. 

2. Given any ideal #o which is the defining differential ideal of some element 

over ~, and any g ~  #0, there exists # _3 ~0 such that ~ is constrained with 

constraint g. 

3. If a is constrained over ~, ~ differentially perfect, then ~ ( a )  is differen- 

tially perfect (see Wood [24]). 

THEOREM 1.2. Let # be constrained with constraint g over a differentially perfect 

differential field ~;, and let f be a lowest element of #. Then for a ~ ~ '  D_ ~, ~:' a 

differential field extension of ~:, the following are equivalent: 

1) ~ ={h ~ ~ { y } l h ( a )  = 0}, i.e., # is the defining differential ideal of a. 

2) a is a generic zero of f. 
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3) f (a)  = 0 and (Stlig)(a) ~ O. 

PROOF. By Remark 1 above, f is irreducible. 

(1) ~ (2). Clearly if ~ is the defining differential ideal of a, then f (a)  = 0 since 

f was chosen to be in ~r If h is lower than f then h ~ ~r hence h (a) ~ 0. Thus a is 

a generic zero of f. 

(2) ~ (3). If a is a generic zero of f then clearly f (a)  = 0. Now we can take go 

a remainder of g with respect to f, so that S~I~g - go E [f] where go is lower than 

f. If go = 0 then S~I~g E ,,~. Since ~ is prime this implies St E ~r or It E ~r or 

g E ~r each of which is impossible since $I and I t are lower than f, Stlt~ 0, and 

g ~ .  Thus g o ~ 0  and so (S~I~g)(a)~O. 

(3) ~ (1). Let f ( a )  = 0 and (Stltg)(a)~O. Let h E ~{y} and find ho such that 

S~I~h - ho E [f] where ho is lower than/ .  If h E ~ then ho E or and so ho = 0 by 

our choice of f. Thus (Stlth)(a) -- 0. But (Stlt)(a) ~ 0 by assumption, so h (a) = 0. 

Thus the defining differential ideal ~r of a contains ~r and does not contain g 

(since g(a )~  0). By maximality of ~ such that g ~  ~r we have P = ~ '  and (1) is 

proved. 

By the above result we see that for an element a which is constrained over the 

differentially perfect differential field ~:, the isomorphism type of a is given by 

one equation f ( a ) = 0  and one inequation (Sfltg)(a)~O. By, the division 

algorithm procedure we may replace Stlrg by a differential polynomial lower 

than f, and then by the division algorithm for f and g as polynomials in D"y over 

~r [y , . . . ,  D- - ly ]  (where n is the order of f)  we can find go of order less than n 

such that f ( y ) =  0, go(y)~ 0 is equivalent to f ( y ) =  0, (Stltg)(y) ~ O. Thus the 

isomorphism type of a constrained element is determined by a pair f ( y ) =  0, 

g (y) ~ 0 where g has lower order than f. This is not to say that every such pair 

determines an isomorphism type, but it is correct that every such pair (f(y) = 0, 

g(y) ~ 0 with St and g nonzero, and order f > order g) has a solution in some 

extension of ~ :  a generic zero of any irreducible factor fo of f with the same 

order as f will do. In fact we can solve the pair by a constrained element by 

taking ~ to be any ideal containing f and constrained with constraint g, and then 

letting a be an element as in Theorem 1.2. It is also an immediate consequence 

that given f (y)  = 0, g(y) ~ 0 with f, g E ~{y}, Stg~ O, and order f > order g, this 

system always has a solution not only over ~; but over any prescribed extension 

~:'_~ ~. We state without proof the following theorem of a primitive element, 

which is necessary for us only in the nonzero characteristic case. (See Seidenberg 

[16].) 

THEOREM 1.3. Let ~; be differentially perfect such that ~; has infinite linear 
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dimension over its constant field. Then for any ~:' D ~ and b l , . . . ,  b~ in ~ '  

differentially algebraic over ~; there is a E ~:' such that ~ < bl, . . ", b, > = ~:(a ). 

2. Basic model theoretic results 

Let L be a language with constants 0 and 1, binary functions + a n d . ,  unary 

functions -1, - ,  D ; L is the language of fields together with an additional unary 

function D. In L, the theory D F  of differential fields is the theory of algebraic 

fields plus axioms for D:  

V x V y D ( x + y ) = D x + D y  and D ( x y ) = x D y + y D x .  

Thus D F  is a universal theory. For p = 0 or p a prime let DFp be the theory of 

differential fields of characteristic p. For pf i  0 we let ~,p be the sentence in L 

saying that if the characteristic is p then every constant has a pth root. 

C p = V x 3 y ( ( l + - . . + l ) = 0 ^ D x = 0 ~  y ~ = x ) .  
, r  

p times 

Then D P F  = D F  t_l {~p [p prime} is the theory of differentially perfect fields; we 

denote by DPFp the theory DPF IJ DFp of differentially perfect fields of 

characteristic p. 

For the theory D C F  of differentially closed fields we add to D P F  axioms 

(infinitely many) stating that a solution exists for every pair [ ( y ) =  0, g ( y ) ~  0, 

provided that Sr 0 and order of f > order of g. 
The usual chaining procedure works here to show that D C F  is consistent, in 

fact is model consistent relative to DF; for example, one can alternate taking 

differentially perfect extensions and closing under solutions of appropriate pairs 

f = O ,  g~O.  
If :T is a model of D C F  and a is constrained over ~: then the isomorphism 

type of a over ~: is given by a pair f = 0, g ~  0, by Theorem 1.2; since such a pair 

is already soluble in :~ we conclude that a ~ ~. Thus we see that although any 

differential field has proper extensiong : ~ ' ~ :  which contain new elements 

differentially algebraic over :~, none of these can be constrained over :~, whence 

the name constrainedly closed differential fields employed by Kolchin [4]. 

We note here that in particular a differentially closed field is separably 

algebraically closed and has separably algebraically closed constant field. 

The model completeness of D C F  can be proved in several ways. Robinson's 

original proof [9] for a theory equivalent to DCFo used Seidenberg's elimination 
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theory [15], as did my proof in [23] for p #  0; there one considers differential 

polynomial equations and inequations in several variables and observes that 

Seidenberg's results imply directly that the class of existentially closed differen- 

tial fields is axiomatizable. By examining the isomorphism types of simple 

extensions Blum [1] gave much simpler axioms for DCFo; we shall give here a 

version of her proof. 

DEFINITION. A theory T has the amalgamation property if for any M, ~,  ~ ~ T 

with M C 9 ,  M C ~g there exists a common extension ~ of ~ and ~. 

For T universal, it suffices to find such a ~ for ~ and ~ of the forms 

= M(b), ~ = M(c), where by M(b) we mean the model of T generated by 

M t_J {b} (for b some element of some M'D_ M, M '~  T). Thus the following 

lemma is clear from our discussion of simple extensions. 

LEMMA 2.1. The theory DFo of differential fields of characteristic 0 has the 
amalgamation property. 

DEFINITION. A theory T is 1-existentially complete if for any pair M, ~ # T 

such that M C ~ and for any formula ~ of the form r = 3y~b (a l , ' "  ", a,, y) 

where ~ is quantifier free and al , - -  -, a,  E M, if ~ ~ q~ then M ~ ~. 

We use the following consequence of Blum's criterion for the existence of a 

model completion of a universal theory (theorem 17.2 of Sachs [14]) as follows: 

LEMMA 2.2. Let T be a universal theory with amalgamation and let T* be a 
model consistent extension of T such that T* is 1-existentially closed. Then T* is 
the model completion of T. 

PROOF Blum's criterion states: for T* a model consistent extension of a 

universal theory T to be the model completion of T it is necessary and sufficient 

that any diagram of the following form be completable, for M,M(b)k ~ T, 
* ~ T*, ~ *  I Card ~t I+-saturated: 

t 
M I 

t 

To see the lemma from this criterion, first amalgamate ~* and ~ ( b )  over ~ to 

get qg I = T, with 
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M(b) 

Any finite set of quantifier-free formulas defined over M and satisfied by b in 

M(b),  hence in ~, must also be satisfied in ~ *  since ~ * ~ T *  and T* is 

1-existentially closed. Since ~ *  is I card M r-saturated we know that the full set 

of quantifier-free formulas satisfied over M by b is also satisfied in ~ * by some 

element b*. The required map of M(b) into ~ * is given by sending b to such an 

element b*. 

THEOREM 2.3. (Robinson, Blum) The theory DCFo of differentially closed fields 
of characteristic 0 is the model completion of DFo. 

PROOF. We note that DCFo is 1-existentially complete: this amounts to 

checking that any finite set of differential polynomial equations and inequations 

(as usual, one inequation suffices) in one variable fl(Y) . . . . .  f n ( y ) = 0 ,  

g (y)  ~ 0 which are satisfied by some a ~ 9 7' _D 97 for 97 t = DCFo, 97' ~ DFo must 

already have a solution in 97. To see this, for example, we take a constrained 

ideal 5 ~ over 97 with constraint g such that ~ contains the defining differential 

ideal of a over 97. But since 97 ~: DCFo and 5 ~ is constrained, there is b E 97 with 

ideal ~, whence b is a solution of the original system. Thus DCFo is 1- 

existentially complete. By Lemmas 2.1 and 2.2 we conclude that DCFo is the 

model completion of DFo. 
If 97 I = DF, 97 I~ DPF, the characteristic p of 97 is nonzero. In this case we can 

find extensions 971 and 972 of 97 with no amalgam over 97: let c E 97 such that 

D(c) = O, cf~ 97~ and let 971 and 972 both have the algebraic field structure of 

97(cl/p), assigning D(c ~ )  = 0 in 971 and D(c ~/~) = 1 in 972. Since c has only one 

p th  root in any extension there can be no @ ~DFp such that 971C ~d, 972 C_ ~d. For 

a theory to have a model completion, it must itself have the amalgamation 

property, so the best we can get is that DPF has a model completion. 

LEMMA 2.4. For all p, DPFp has the amalgamation property. 

PROOF. See Seidenberg [15] or Proposition 4, p. 91 of Kolchin [4]. Here  we 

cannot consider simple extensions only, since DPF~ is not universal, and our  

discussion of simple extensions is thus inadequate for the present purpose. 

Given 2.4 and 1.3 we can finish a proof of model completeness along the lines 

of 2.3. It is convenient to introduce an auxiliary language L(r) where r is an 

unary function which will be useful in our discussion of types later, and in 
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which we can axiomatize DPF~ with universal axioms. Let 0r = 

Vx ((Dx ~ 0 ^ r(x ) = O)v (Dx = 0 ^ (r(x ))P = x)). The function r is clearly defina- 

ble in all models of DPFp, so that the models of DPF r correspond exactly to 

those of DPF'p = DF r U {0r}, and what is now changed is that a substructure in 

L(r)  of a model of DPF'p is again differentially perfect, while a simple extension 

in L(r)  may be much more than a simple extension in L. 

THEOREM 2.5. DCF is the model completion of DPF, hence the model compan- 

ion of DF. 

PROOF. For each p we show DCFp is the model completion of DPF r For p = 0 

this is 2.3. For p ~  0 we work in L(r), where DPFp is universal and has the 

amalgamation property by 2.4. Thus it suffices to know that DCF r is 1- 

existentially complete as a theory in L(r). Let ~0 = 3y~b(al, �9 �9 a,, y)  be of the 

requisite form (~b quantifier free) with al ,-  �9 a~ E ~: for some ~: ~ DCFr, and 

let b E ~ '  ~ DPF r, ~ '  ~_ ~ such that ~ '  ~ ~0(al, �9 �9 an, b). Now let bl,- �9 bk E 

~:' be all the elements corresponding to terms of the form r(t) which occur in ~b. 

By replacing ~ '  if necessary we may assume that bl, . . . ,bk,  b are each 

differentially algebraic over ~, since no finite bit of information such as ~b can 

imply that any of the terms in it correspond to differentially transcendental 

elements. Consider the differential field extension ~:(b~, . . . ,  bk, b) of ~:. Since 

~ DCF r it must be that ~ has infinite linear dimension over its constant field 

(for each n > 0  there is a solution c, in ~ to D~ =0 ,  D" -~yf i0 ,  and the set 

{c, I n =,1, 2,.  �9 �9 } is seen to be linearly independent over constants by checking a 

suitable Wronskian). Therefore  ~(b~, �9 �9 bk, b) = ~ ( c )  for some c, by 1.3. Now 

anything satisfied in ~ ( c )  is satisfied in ~, by the same argument as for 

characteristic 0, i.e, that DCF is a 1-existentially complete theory in L. Thus 

DCF is a 1-existentially complete theory in L. Thus DCF is 1-existentially 

complete in L(r)  and the proof is finished. 

COROLLARY 2.6. i) In L, DCFo is substructure complete (i.e., admits elimina- 

tion of quantifiers ). 

ii) (pfi  0) In L(r), DCFp is substructure complete. 

iii) (p = 0 or p ~  0, in L(r)  or L)  DCFp is complete. 

PROOF. i) and ii). Immediate since each is the model completion of a universal 

theory in the given language. 

iii) The prime algebraic field is also a prime model of DPFp, and so DCF~ is the 

model completion of a theory with a prime model. It follows that DCF, is 

complete. 
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3. Differential closure 

A natural question which arises whenever one has a model-completion T* of a 

theory T is whether there is any economical way to extend a model of T to one 

of T*; that this is sometimes the case is seen in notion of algebraic closure and of 

real closure. A key property such an extension should have is that a copy of it is 

to be found inside any extension to a model of T*, hence the following 

definition. 

DEFINITION. Let T* be the model completion of T and let M C ~,  ~ I = T, 

~ T*. Then ~ is a prime model extension of M provided for all qg _D ~t such 

that qg I = T* there is an embedding of ~ into cg over M. Given that ~t has a 

prime model extension ~ there are two additional desirable properties which 

may have, uniqueness and minimality. We say ~ is the unique prime model 

extension of M if any other prime model extension ~ of M is isomorphic to 

over M, and that ~ is a minimal prime model extension of M if there is no 

with M C c ~  such that ~ is also a prime model extension. 

Looking for a prime model extension involves some ability to choose which 

isomorphism types of extensions to include. Given a substructure complete 

theory T* there is for each substructure M of a model of T* an associated Stone 

space S (M) of 1-type, which are just the isomorphism types of simple extensions 

of M; a basic neighborhood U~ in S(M) is determined by a quantifier free 

formula q~(y) in one free variable y; U~ is the set of all 1-types which include 

~(y) .  In case U~ is a singleton {q} (i.e., q is an isolated point) we say that q is a 

principal 1-type. Since any such principal 1-type must be realized by some 

element in any ~ _~ M such that ~ ~ T*, it is convenient if there are a lot of 

principal 1-types around, as is the case for T* = DCF. 

THEOREM 3.1. (Blum p = 0, Wood and 

isolated points of S ( ~ )  are dense in S(~T). 

PROOF. For  characteristic 0 a 1-type is just 

Shelah p # 0) For ~ ~ DPF, the 

a simple differential field extension, 

and the principal 1-types are exactly the isomorphism types of constrained 

elements, as was seen in 1.2, so the density follows from the fact that any 

consistent finite system of equations and inequations has a constrained solution. 

If the characteristic is p #  0 then we must work in L(r), and the density requires 

a bit of information about finitely generated differential field extensions and 

constrained ideals in more than one variable. The fact that if ~: ~ DPF and the 

ideal of a l , "  ", a.  is constrained then ~ ( a t , - "  ", an)k = DPF keeps the principal 

1-types from being horrendous. Again we refer to [24] for details. 
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COROLLARY 3.2. Over each 3; ~ DPF there exists a prime model extension 

~ DCF (called a differential closure of J;). 

PROOF. This Corollary is immediate from 3.1 by a result of Morley's, that any 

substructure complete theory T with the isolated points of S(M) dense in S(M) 
for all M a substructure of a model of T has prime model extensions for all M. 

We describe this kind of prime model extension for DCF as follows: let 

~ DPF and let ~ '  be some extension of ~ to a model of DCF. Obtain a chain 

{ ~ }  of models of DPF by letting ~o = ~, taking unions at limit ordinals, and 

taking ~+1 = ~ ( b . )  for any b, E i f ' -  ~ which is constrained over ~ (if such 

exists). The first time no such b exists we have ~ .  = ~, an extension of ~, and by 

our earlier observations it is clear that ~ ~ DCF. Further, if ~ C_ ~ " ~  DCF, 
then we can build up an isomorphism of ~: into ~ "  using the description of 

since at each stage there must be an image for b, in any model of DCF into 

which ~ is embedded (since b, is constrained over ~T, and DCF is model 

complete). A prime model extension which can be written as the union of a chain 

of extensions of this sort (in our case extensions via constrained elements) is 

called a Morley prime model extension. Even without the uniqueness result we 

can see at this point that any differential closure ~" of ~ ~ DPF will have the 

property that any a E ~ realizes a principal 1-type over ~, and thus corresponds 

to a constrained extension (but for nonzero characteristic this may not be a 

simple extension). It is not however the case that for ~ C_ ~ ' ,  ~ ' ~  DCF, a 

differential closure of ~ is always obtainable by adjointing to ~ all elements of 

~ '  constrained over ~. The result will be differentially closed, but there clearly 

exist i f '  which contain too many ( >  card ~:) elements which realize the same 
constrained type of order > 0. 

We deal in section 4 with the uniqueness of differential closures, but first close 

this section with a few additional remarks about the Stone space of a differential 

field of characteristic 0. 

DEFINITION. A theory T is to-stable if for any countable ~t ~ T, the set S(M) is 

also countable. 

THEOREM 3.3. (Blum) DCFo is to-stable. 

PROOF. This is just a restatement of Lemma 1.1, since the elements of S ( ~ )  

correspond to simple differential field extensions of ~:. 

DEFINITION. The Morley derivative ~S(~;) is the set of all points in S(5~) which 

are either not isolated in S ( ~ )  or which extend in S(~;'), for some ~'_D ~, to 
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points which are not isolated in S(~:'). The operation of taking Morley 

derivatives can be iterated such that for ~: C 5 ~' we have @aS(~:')---~ ~ '~S(~)  

under the obvious restriction map of 1-types over ~ '  to 1-types over ~. (See 

Sacks [14] or Morley [6].) The to-stability of a theory T implies that there exists 

a such that ~ " S ( M )  = ~ for all ~t a substructure of a model of T; the least such 

a is called the Morley rank of T, while the Morley rank of p E S(.~t) is the 

greatest a such that p ~ ~aS(M),  if such exists. 

THEOREM 3.4. (Blum) The Morley rank o[ DCFo is to + 1. 

PROOF. We claim first that if q is a 1-type in S(~:) corresponding to the generic 

zero of a polynomial f of order n, then the rank of q is at most n. Observe that 

for any q '  ~ S(~='), where ~:' D ~: and q'  extends q, that q '  corresponds to a 

generic zero of a polynomial of order _-< n. Now for n = 0, q is the type of an 

algebraic element over ~: and is clearly isolated in S(~:) as is q '  in S(~:') for all 

~ '  _D ~ and q' _D q. Now assume that ~ ~S(~) consists only of 1-types of generic 

zeros of order  => n and let q E ~nS(~:)  with corresponding f of order  n. Then 

the f o r m u l a / ( y )  = 0 together with g ( y ) ~  0 for all g of order < n determine the 

type q. But the formulas g ( y ) ~  0 are superfluous in ~ ' S ( ~ )  since there are no 

types left in ~ ' S ( ~ )  containing g ( y ) =  0 for g of order < n; similarly for any 

q'_D q in S ( ~ ' )  where ~:'_~ ~. Thus the formula f (y )  = 0 isolates q in ~"S(~ : )  

and it or one of its finitely many factors over ~:' isolates a type in ~ ' S ( ~ : ' )  for 

~: 'D ~, so qC ~§  To see that some types of order n survive until the 

nth Morley derivative we consider the type q of a generic zero of Dny = 0. For 

n = 1 we know that all constrained zeros of Dy = 0 are algebraic over ~-, and so 

there can be no finite way to isolate q from the algebraic types. Assuming that 

the type of a generic zero of D n-ly = 0 has rank n - 1, we let q~ be the 1-type of 

a generic zero of D"-~y = k, for each k > 0, and let a~ E ~: such that D'-lak = 

k. Then qk is given by saying y - ak is a generic zero of D ' -~y  = 0, hence qk also 

has rank n - 1 .  But now we have infinitely many elements {q~lk >0} in 

"- 'S(~:)  all containing the formula D ~y = 0; clearly any finite subset of q is 

contained in some (in fact infinitely many) q~, so we cannot isolate q in 

~ " - ~ S ( ~ )  from the q~'s. Thus q C ~ ' S ( ~ ) .  Thus we get that ~ ' S ( ~ - ) =  {q} 

where q is the 1-type of the differentially transcendental extension of ~, and 

hence ~ '§  = ~ ,  giving DCFo Morley rank to + 1. 

Observe that this does not imply that the 1-type of a generic zero of an order  n 

polynomial over ~: ~ DFo must survive in ~ ' S ( ~ ) .  One interesting example, 

due to Kovacic and Kolchin (unpublished), is that of the Painlev6 transcendents; 

they show that given ~ I = DFo with x ~ ~ such that Dx = 1, the polynomial 
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/ ( y )  = D2y - 6y2+ x has no zeros of transcendence degree 1 over ~,  hence that 

the Morley rank of the 1-type of a generic zero of [ is 1, not 2. 

Closer examination of 1-types over models of DFo lead to interesting and 

apparently difficult questions. First of all there is the general question of which 

differential polynomials have constrained generic zeros. We observe that if a is 

constrained over ~: then the constant field of ~ ( a )  must be algebraic over cr the 

constant field of ~:. It is possible however to let a be differentially algebraic but 

not constrained over ~;~DCFo with ~:(a) 's  constant field equal to qg; for 

example, if a is a generic zero of Dy = y 3 -  y2, by a result of Rosenlicht [11] 

which we state as 5.3. Also related to this is the open question of the number of 

countable models of DCFo, whose solution may require additional information 

concerning the isomorphism types of elements which are not constrained over 

certain countable fields. 

4. Stability and uniqueness 

The uniqueness of the differential closure of a model of DFo follows from the 

to-stability of DCFo by a general theorem of Shelah [21] (see also Sacks [13] or 

[14]). An algebraic account of this is given in Kolchin [4], where the differential 

closure is characterized as follows. Let ~: C ~:, ~ ~ DFo, ~ I ~ DCFo. Then ~ is 

the differential closure of ~ if and only if every element of ~: is constrained over 

~: and every set of indiscernibles in ~: over ~ is at most countable. 

(A set S of elements in ~ is indiscernible over ~: if for every n > 0 and every 

formula ~ ( x i , - . . , x n )  defined over ~ with free variables xl , . . . , x . ,  either 

~ ~ ( s l , ' - . ,  s,) for every n-element subset {sl , - . - ,  s,} of S or for none.) 

For differential fields we can single out a special kind of indiscernible set $ 

over ~:, called an independent set of conjugates in Kolchin [4], with the 

additional property that the fields {~(a)l a E S} are linearly disjoint over ~:. 

This implies that each a E S is a generic zero of some fixed [ E ~:{y} over ~ and 

also over any extension of the form ~:(S') where S'C_ S -  {a}. 

DEFINITIONS. (See [18] or [20].) A theory T is A-stable if for all M ~ T of 

cardinality A, card S(M) = A. We say T is stable if T is A-stable for some infinite 

A; T is superstable if there exists K such that T is A-stable for all A >_- r. 

We remark that to-stable implies A-stable for all infinite A, and so DCFo is 

superstable, by 3.3. 

In contrast, we prove in 4.1 and 4.3 that for p # O, DCFp is A-stable just in case 

A No = A, giving us that DCF is stable but not superstable. 
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THEOREM 4.1. ( p ~  0) DCFp is not superstable ; for any r and any ~; = DCF~ o f  

cardinality r, the cardinality o f  S(~;)  is at least K N~ 

PROOF. Let I ~ l  = K, ~r ~ DCFp and let cr be the constant subfield of ~. Pick 

any a E ~: such that Da = 1. Since ~P = ~r we know Ice I = r also, so there are 

r "~ distinct sequences {c,},~, of elements of cr For each such sequence we 

produce a type over  ~r, as follows. 

For b algebraically transcendental over  ~ we define the differential field 

extension ~rl = ~ ( b )  by setting Db = 1. Then b - a is a constant in ~:1 with no 

p th  root in ~1 (easily checked) so we may extend ~:1 to ~:~ = ~:l(b~) where 

b~ = b -  a, Db~ Db~ = c~. (In general, Dbl can be anything we want, since 

bl ~ ~ ,  b~' E ff~.) Now bl - c~a is a constant of ~:2 without a pth  root in ~2 

(again easy to check) and we take ~3 = ~2(b2) where b~ = b~ - cla, Db2 = c2, etc. 

Thus the following set of formulas is consistent: 

{Dx = 1 } t 0 { : l x ~ ' " 3 x , ( x ~  = x -  a ^ Dx~ = c~ ^ x~ = X l -  cla ^ Dx~= c2^ " "  ^ 

x~, = x , _ ~ -  c,_~ a ^ Dx ,  = c.)[ n E to} 

Each of these sets extends to obviously distinct types over  ~, and there are K"o of 

them. 

Even though DCFp is not superstable, there is another  property,  namely that 

of being quasi-totally transcendental,  for which the Shelah proof  of uniqueness 

of to-stable theories goes through unchanged (e.g., for real closures, as described 

in Sacks [13]). A quasi-totally transcendental theory T is a substructure 

complete  theory such that the Morley ranked points of S(~r are dense in S(~t)  

for all substructures ~ of models of T. However ,  for p ~ 0 we have that DCFp is 

not quasi-totally transcendental.  For let ~ ~ DPFp, if; the prime field with p 

elements and let a be a zero of D y  - 1 over  ~. Then a is constrained over  ~: 

(any trivial constraint such as 1 ~ 0 will do), and so ~ ( a ) ~  D P F  r If DCFp were 

quasi-t.t., the type q of a over  ~, being isolated, must also be ranked. But the set 

of types over  ~ ( a )  which contain the equation Dy = 1 is much too large, since 

we can take a generic zero b of Dy = 1 over  ~:(a)  and we have now a new 

constant, b - a, whose pth  root can have any of 2"o types (as in the proof  of 4.1), 

all of which goes into the 1-type of a generic zero of Dy = 1 over  ~:(a).  Thus q 

cannot be ranked. The existence of these 2 "o many types implies also that there 

are 2 "~ nonisomorphic countable differentially closed fields of characteristic 

p ~ 0. For  ~ > al0 the existence of 2" models of power K follows directly from the 

nonsuperstabili ty of DCFp via a result of Shelah [18]. 

None of the above leads us to uniqueness of differential closure for arbitrary 
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characteristic. For this we use a result of Shelah's stronger than that for to-stable 

theories, which applies generally to stable theories for which prime model 

extensions exist. 

LEMMA 4.2. Let  if, if;a, i f  : ~ D C F  such that ~x and if2 are linearly disjoint over 

ifx N if2 = if, and let i f ' =  ifx(if:) be a compositum of i f l  and if~. Then 

i f '  ~ DPF. 

PROOF. We assume the characteristic is p f i  0; otherwise there is nothing to 

prove. Let cr ~ ,  qgz, cr be the constant fields of if, if1, if2, if ' ,  respectively. If 

c E cr say c = a /b  for polynomial expressions a, b in elements of if~ U if2, then 

c = abP-X/b p and D ( a b  p-x) -- 0, where ab p-x E (if')P just in case c ~ (~')P, so we 

may assume c = E,%~ a~b~ for a~ E if2. By choosing n minimal for our given c, we 

conclude that the sets {a~, �9 �9 a,} and {bx, �9 �9 -, b~} are each linearly independent 

over if. By the disjointness of ifx and if2 9ver i f  it follows that the set 

s = {a,bj [ 1 <- i , j  <_- n} is also linearly independent over if. Next we claim that for 

each i, Da, is linearly dependent on {ah" �9 ", a,} over i f  and similarly for the b~'s: 

otherwise we may assume by relabelling that { a , . . . , a , ,  D a , . . . , D a k }  is 

linearly independent over i f  and that { b , . . . , b , ,  D b , , , . . . , D b J  is linearly 

independent,  with all the other Da~'s and Dbj's  dependent  on these sets, 

respectively. By disjointness we know that 

S ' =  S U{a,Db~j [1<-_ i <-_ n, 1 <= j <- m } U { ( D a , ) b j  [1_-< i _-< k,l_-<j <= n} U 

{(Da,)(Db~j) [ 1 <- i <- k, 1 <= j <= m } 

is linearly independent also. But if we replace the remaining Da~'s and Dbj's  

respectively, by expressions in the two given linearly independent sets in the 

equation 

0 = O c  = W a , ) b ,  + a , ( O b , ) ,  
i ~X  i~X  

then the coefficient of (Da~)bl is 1, contradicting the linear independence of S'. 

Thus we have Da~ = ET=~ t~jaj for some t~, E if. 

Now consider the system (*) Dy, = E~'=, t~iy j, i = 1 , . . . ,  n, of linear equations 

over i f  in indeterminates y , . . . ,  y,. Since i f  ~ D C F  and (*) has a solution in 

o%1 _D if, there exist solutions (dlx, ' '  ", d , 0 , ' '  . , ( d ~ , . . . ,  d.k) in i f  such that any 

other solution of (*) in i f  is a linear combination of the given ones. Actually, any 

solution e x , "  ", e, must actually be a linear combination over ~ of the given 

solutions, since if e~ = E~=~ cjd~j, i = 1 , - . . ,  n is a solution of (*), then 



346 C. WOOD Israel J. Math. 

k k 

toej = De, = ~ cj(Dd,,)+ ~, (Dcj)do 
j= l  j= l  j= l  

= cj tod, j + (Dcj)d,j 
j= l  j=!  

k 

= ~ toe, + ~ (Dci)do 
j= l  

and since the solutions were taken to be linearly independent we have 

0 = Y.~=~ (Dcj)d,j implies Dcj = 0 and so each cj E ~. Now since ~rl I = D C F  this 

implies that each of the original a~'s can be written as a linear combination of 

elements of ~ with coefficients from ~1; similarly each b, can be written as a 

linear combination over ~:  of elements of ~ Therefore  c = s dicnci2 for some 

d, ~ ~:, c,1 E cr 62 E ~2. Again by choosing m least, we may assume {cnc,2[ 1 <-_ 

i =< m} is linearly independent over ~. But now 0 = Dc = s (Dd,)c,,c~2 and so 

Dd, = 0, giving that c ~/p = s I/p, hence c E (~')~. This shows that 

~ ' ~  DPF; in fact we have shown that ~ ' =  ~,(c~2). 

THEOREM 4.3. (Shelah) D C F  is stable. 

PROOF. Again assume characteristic is p ~ 0 ,  and let ~ : C ~  r', with 

~, ~ ' ~  D C F  and card ~ =< x. We must check that there are _-< r "o 1-types 

realized in ~:' over ~. To each a E ~ '  we associate a pair ~oo C ~ r  of 

countable models of D C F  such that 

1) a E ~'rla 

2) ~0a = ~,o fh J r 

3) ~:*a and ~; are linearly disjoint over ~:o.. 

Clearly 'for any a E ~ '  such a pair exists. By Lemma 4.2, ~ . ( ~ ) D D P F .  For 

a, b ~ ~ '  we consider a and b equivalent if ~o. = ~:0~ and ~ .  is isomorphic to 

~q~ over ~o. under a map which sends a to b. There are obviously _-< ~,,o such 

equivalence classes. If a and b are equivalent, then the isomorphism of ~ .  and 

~ extends to one between ~:~,(~:) and j r  (~) .  Since ~:~,(~) ~= DPF we may 

conclude that a and b have the same 1-type (in L(r) )  over ~;. 

Macintyre has observed that the stability of each of the theories of separably 

closed, nonalgebraically closed, algebraic fields may be proved along the lines of 

this stability proof for DCF~. This gives the first examples of stable but not 

superstable theories of fields. 

We mention some consequences for differential closures of the general 

model-theoretic results concerning prime model extensions (as in Chapter 32 of 

Sacks [14]). 
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DEFINITION. Let 97 C_ 971 C_ 972 be models of DPF. Then 971 is normal in 972 

over 97 if whenever a E 971, b E 972 realize the same 1-type over 97, then b ~ 971. 

(These include the strongly normal extensions of differential algebra.) 

THEOREM 4.4. a) Let ~; be a differential closure of 97 ~ DPF, and let 97' ~ DPF, 

97 C_ 97' C_ ~. I f  either 97' is finitely generated over 97 or 97' is normal in ~ over 97, 

then ~ is the differential closure of 97'. 
b) Let 97" be, constrained over 97 ~ DPF (i.e., the 1-type of each element of 97" 

corresponds to a constrained ideal in some finite number of differential indetermi- 
nares) and let 97' ~ DPF, 97 C_ 97' C_ 97". Then either 97' finitely generated over 97 or 

97' normal in 97" over 97 implies 97" is constrained over 97'. 

THEOREM 4.5. (Shelah [20].) The differential closure ~; of a differentially perfect 
differential field 97 is unique up to isomorphism over 97. 

PROOF. The proof we sketch here is for 97 of cardinality I~1, as given in [18] for 

arbitrary stable theories with prime model extensions. For cardinality -<_ 1% 

uniqueness follows by the usual back and forth argument, as given by Vaught. 

For cardinality N1, the proof employs properties of closed unbounded sets and 

stationary sets, as given in Devlin's Aspects of Constructability, Springer Lecture 

Notes No. 354. Let 97 C_ ~ where ~ ~ DCF~ (p arbitrary) is the Morley prime 

model extension of 97 ~DPFp, with c a r d 9 7 - - c a r d ~  = 1~11. We write ~ = 

97(a,)~<., where a~ is constrained over 97(a~)~<, with isomorphism type given 

by f ,  = 0, g , ~  0. Now suppose ~3 is another differential closure of 97; since ~d is 

embeddable in 5 ~ over 9 7 we assume 97C ~JC;~. Take {97~}~<~ to be a 

continuous chain of countable fields such that 

2) 97. ~ DCF, 97,, M aJ ~ D C F  

3) For all v < r/, f~, g~ E 97~{y} 
4) For all v < 7/, a~ ~ 97~. 

(This is clearly possible.) 

Next we observe that there is a closed unbounded subset B of to~ such that for 

all 7/~  B 

5) 97nN{a~lv<to1}={a~[v<T1} 
and 

6) For each b ~ 97. the 1-type of b over ~ (necessarily principal) is given by 

equations and inequations with coefficients from ~; tq ~;,. 

(A closed unbounded subset B of to~ is a cofinal subset such that sup(a  N 

B) E B for all a < to~.) 
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Now let Bo = {7/E B : ca is constrained over ~:(ca n ~:~)}. We claim that Bo 

contains a closed unbounded subset of to1. 

Given the claim, i.e. given B '  closed unbounded, B'C_Bo, we build an 

isomorphism of 9; onto 9~ by a chain of isomorphisms {r such that 

i) ~ is an isomorphism from ~:(ca n ~ )  onto ~(~:~), for all rl ~ B' .  

ii) If r/, v ~ B' ,  77 < v then ~v [ ~ n ~ >  = ~0~. 

iii) If • = s u p { v l  v <  r/, v~B'},  then ~0, = U{~0vlv< n, v E  B'}. 

To define the ~0~'s we need only consider the case where 9~ satisfies (i)-(iii) 

and v is the B'-successor of 7/ (or where v is the least element of B'). Then 

ca O 2T~,~ are countable and constrained over ( ~ O  ~ ) ( ca  O ~r  ), 

( ~ n  ~)(~:~) ,  respectively. The Vaught argument thus allows us to extend 

~o, I (~ ,o~n~> to an isomorphism from (~: n 2T~)(Ca n ~:~) onto ( ~  n ~ . ) ( ~ ) .  

This extension is consistent with the identity map on ~;, and so we get that there 

is an isomorphism ~o~ from $:{ca O 2T~) onto ~ ( ~ , )  which extends ~ .  The 

isomorphism of ca onto ~: is then given by U,~8,~o~. 

To see the claim the procedure is to assume the contrary, i.e., that S = to~ - Bo 

is stationary. By the usual arguments about stationary sets we may conclude that 

there is a stationary set S'C_S and a pair of differential polynomials 

f(y, x~ , "  ", x., z ~ , "  ", zm) and g(y, x~, . . . ,  x., z~ , . . . ,  z,,) - -  for ease of notation 

we assume n = m = 1 - -  defined over the prime subfield, and some c ~ ~.,o, 

where r/o is the least element of S', such that: for all r / ~  S' there are a.  ~ ~: and 

b, ~ ca, b, not principal over ~(ca n $:7) but b, constrained over ~(~:~) with 

isomorphism type given by f(y,a,,c)=O, g(y,a~,c)#O. Now we choose an 

increasing sequence rh<*7~< " '"  in S' such that a~,, b,, ~ ~,, . ,  and pick 

c, ~ ca n ~ ,  such that c, has the same type over ~:(b,~)~<~ as does c. (This is 

possible since ca O ~ ,  ~ DCF and since c realizes a principal 1-type over 

hence over ~:(b,,)i<,.) But now we have, for each i <  to, f(b,,,a.,,,c,)=O, 
g (b,~. a,~, c,) # 0 if and only if k -< i. Otherwise, for k > i, b,, would realize a 

principal type over ~(ca n ~,,), a contradiction. Therefore  the pair f = 0, g # 0 

has what is called the order  property (see [19] or [20]), which contradicts the 

stability of DCF,. 

5. Nonminimality of the differential closure 

Recall that the differential closure ~; is minimal provided there exists no 

~' ~ DCF such that ~: _C ~ : ' ~ .  There is a general model-theoretic criterion for 

minimality (see, for example, [14]) which states that ~: is minimal over ~r if and 

only if every set of indiscernibles in ~: over ~: is finite. Nonminimality results for 
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characteristic 0 were obtained independently by Kolchin [4], Rosenlicht [11], 

and Shelah [17]; nonminimality for characteristic p is an open problem. We give 

here some general results due to Rosenlicht, and refer to the three papers for 

further details. The reader wishing to be convinced of nonminimality as easily as 

possible should consult w and the Appendix of Kolchin's paper. 

A differential polynomial having an infinite set of indiscernible generic zeros 

must have order _-> 1 and cannot be linear. Thus the natural first candidate would 

be something of the form D y -  f (y )  for, say, a nonlinear f of order  0. The 

following result of Rosenlicht's shows that certain of these do give rise to infinite 

sets of indiscernibles. 

THEOREM 5.1. Let ~;, ~;' ~ DFo, $; C_ ~ ' ,  and let qg, ~ '  (their respective constant 

fields) be such that (~' is algebraic over ~. Let f (y )  ~ qg (y) (the algebraic function 

field over ~ in algebraic indeterminate y) where 

1 _ ~ c CgU,/cgy+ cgv 

f(y)  u, ay 

for some q , . . . ,  c, E cr ul,-" ", u,, v E ~r (y). 

If a, b E ~T' are zeros of Dy - f ( y )  and if a, b are algebraically dependent over 

~;, then either a or b is algebraic over J; or D( v ( a ) )  = D(v(b)) .  

COROLLARY 5.2. Let J;, ~;', r162 qr be as in 5.1 and let f ( y )  = y/(y + 1) or 

[ (y )  = y 3_ y2. Then if a and b are distinct roots of Dy - f ( y ) ,  neither of which is 

algebraic over J;, then a and b are algebraically independent over ~;. 

PROOF. For f ( y )  = y/(y + 1) take n = 1, cl = 1, ul(y) = y, v ( y ) =  y. For f ( y )  = 

y3_ y2 take n = 1, cl = 1, u~(y)= ( y -  1)/y, v ( y ) =  1/y. In each case we have 

D (v ( a ) ) ~  D (v (b)) for a ~ b, a, b not algebraic over ~, and so by 5.1 such a and 

b must be algebraically independent over ~. 

We now have stated enough to yield nonminimality but we include a second 

interesting result of Rosenlicht's. 

THEOREM 5.3. Let ~; ~ DFo, ~ its constant field, and let $;' = $;( a ) where a is a 

generic zero of Dy - f ( y )  for a n / ( y )  E ~;(y) not of the form c(cgu/Oy)/u or av/Oy 

for any c E (~, u, v E c~ (y). Then ~ is the constant field of J;'. 

Observe that 5.3 applies to the two examples given in 5.2. 

THEOREM 5.4. Let ~ ~ DFo, (~ a constant field. Then the differential closure (~ 

of (g is not minimal. 



350 C. WOOD Israel J. Math. 

PROOF. We note that the only constant solutions of Dy - ( y 3 _  y2)= 0 are 0 

and 1, hence solutions distinct from 0, 1 over qg are not algebraic over C, and so 

are algebraically independent over ~g. This implies that such a set of distinct 

zeros is indiscernible over ~, since any expression involving distinct zeros of 

Dy - (y3 _ y2) can be reduced to an algebraic one, which is nonzero if nontrivial. 

Let 

S = { a E ~ l D a - ( a 3 - a 2 ) = O ,  a #  0, 1}. 

Now S is infinite, since for any a ~ , . . . , a ,  E S we can find a solution of 

Dy - (y3_ y2) = 0, y(y - 1)(I-I~L1 (y - a , ) ) #  0 over ~, hence in ~ ~DCFo. This 

proves nonminimality of ~ for general reasons, but we spell out the details in 

this case. Let S'~S, S' infinite, and let ~ =  ~(S ' )  be the differential field 

extension of qg generated by S'. Let ~: be the differential closure of ~:, where we 

assume c~ C_ ~: C_ ~ _C 4. By 5.3 we have that c~ is the constant field of ~. Now if 

a ~ S - S' we claim that a is not constrained over ~, hence a ~ ~ and so ~: ~ 4. 

For we have S algebraically independent,  hence a is not algebraic over ~:; this 

says a is a generic zero of D y -  (y3_ y2) over ~, since this polynomial is 

irreducible and lowest among polynomials of order > 1. Thus the isomorphism 

type of a over ~ is given by the set 

{Dy - (y3 _ y 2) = 0} O {y (y - 1) # 0} U {y # b [ b ~ S'}. 

Any finite subset of this set is already realized in ~ by some element of S', and 

so a is not constrained over ~:. 

By combining 4.4 with the above result we get many differential fields whose 

differential closures are not minimal. Indeed, I am not aware of a nontrivial 

example (one not already differentially closed) of a differential field wlth a 

minimal differential closure. 

The above results give also an assortment of Vaughtian pairs. We have already 

seen that there exist ~: ~ ~', ~, ~ ' ~  DCFo with ~: and ~ '  having the same 

constant fields (as is also the case for #: ~ ~ in the above proof, since each has 

the algebraic closure of ~ as constant field). To get a pair with distinct constant 

fields but with some other infinite set the same, we start with constant fields 

c~ C_ ~( t ) ,  where t is algebraically transcendental over c~. Let S be the set of 

solutions of Dy - (y3_ y2) = 0, y(y - 1 ) #  0 in 4, the differential closure of cs If 

we take any bijection $ of S onto the corresponding set of solutions in ~ ( t )  

(both are countably infinite)this extends to an isomorphism ~b of ~ into ~ (t'-")over 

~. This gives ~ : =  ~p(~)_C cr ~ '  where the constant fields of ~ and ~ '  

differ: tC ~:' since t is not algebraic over ~. The set ~o(S)= 
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{a E ~1  D a  - (a 3 -  a2) = 0, a ~  0, 1} = {a E ~r,[ D a  - (a 3 -  a2) = 0, a ~  0, 1} and 

so we have a second kind of Vaughtian pair. 

In the setting of his nonminimality proof Shelah also concludes that for K > N0 

there are 2" nonisomorphic models of DCFo of cardinality K. This is done by 

showing DCFo is unstable in the language L(Q) ,  where Q is the quantifier 

" there exists uncountably many",  and then applying the central result of Shelah 

[19]. He shows that given {a~}~<~ U {b~}~<, differentially independent over the 

rationals 0~ one may adjoin a generic zero c of D y -  aab~(y/(y  + 1)) to the 

differential closure ~ of ~({a~} t.3 {b~})~,~<,, and that in ~ ( c ) -  ~: there are no 

zeros of Dy - a~b~,(y/(y + 1)) for (& ~,)~ (a,/3). Thus, given a binary relation R 

on K, one can construct over ~ a differentially closed field ~R of cardinality K 

such that the solution in ~R of Dy - a,,b~,(y/(y + 1)) is uncountable just in case 

(a,/3) E R. This says DCFo is unstable in L (Q) ,  and the proof in [19] yields in 

fact that there are 2 K nonisomorphic ~R's as above. 

We summarize isomorphism results as follows: 

number  of models of power K 

K = No  K > l"lo 

DCF,, ? 2" (as above, by Shelah [17], [19]) 

DCF~ p ~  0 2 '~ (see Section 4) 2" (since not superstable [18]) 

One last result we should mention is Harrington's proof [2] that the differen- 

tial closure of a computable 5~ I = D P F  is itself computable. His proof relies on 

the existence of a constrained solution to any finite system of equations and 

inequations. In connection with this and also with the discussion of differential 

fields in Robinson's 1973 address [9] we note that it is not known whether one 

can actually compute a constrained polynomial with a given constraint and 

satisfying a given finite system of equations. This is one aspect of the long 

outstanding Ritt problem; it is not even clear that this is a question of logic at all, 

if it were to have a positive solution. An answer would nonetheless aid in the 

actual description of the differential closure of a given field, something which 

might be viewed as desirable. 

I would like to thank Angus Macintyre and Ellis Kolchin for many helpful 

suggestions concerning this paper. 
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